Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.857
1.
Am J Hum Genet ; 111(5): 966-978, 2024 May 02.
Article En | MEDLINE | ID: mdl-38701746

Replicability is the cornerstone of modern scientific research. Reliable identifications of genotype-phenotype associations that are significant in multiple genome-wide association studies (GWASs) provide stronger evidence for the findings. Current replicability analysis relies on the independence assumption among single-nucleotide polymorphisms (SNPs) and ignores the linkage disequilibrium (LD) structure. We show that such a strategy may produce either overly liberal or overly conservative results in practice. We develop an efficient method, ReAD, to detect replicable SNPs associated with the phenotype from two GWASs accounting for the LD structure. The local dependence structure of SNPs across two heterogeneous studies is captured by a four-state hidden Markov model (HMM) built on two sequences of p values. By incorporating information from adjacent locations via the HMM, our approach provides more accurate SNP significance rankings. ReAD is scalable, platform independent, and more powerful than existing replicability analysis methods with effective false discovery rate control. Through analysis of datasets from two asthma GWASs and two ulcerative colitis GWASs, we show that ReAD can identify replicable genetic loci that existing methods might otherwise miss.


Asthma , Genome-Wide Association Study , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Genome-Wide Association Study/methods , Humans , Asthma/genetics , Markov Chains , Colitis, Ulcerative/genetics , Reproducibility of Results , Phenotype , Genotype
2.
Pediatr Allergy Immunol ; 35(5): e14143, 2024 May.
Article En | MEDLINE | ID: mdl-38745384

BACKGROUND: Childhood allergies of asthma and atopic dermatitis (AD) involve an overactive T-cell immune response triggered by allergens. However, the impact of T-cell receptor (TCR) repertoires on allergen sensitization and their role in mediating different phenotypes of asthma and AD in early childhood remains unclear. METHODS: A total of 78 children, comprising 26 with asthma alone, 26 with AD alone, and 26 healthy controls (HC), were enrolled. TCR repertoire profiles were determined using a unique molecular identifier system for next-generation sequencing. Integrative analyses of their associations with allergen-specific IgE levels and allergies were performed. RESULTS: The diversity in TCR alpha variable region (TRAV) genes of TCR repertoires and complementarity determining region 3 (CDR3) clonality in TRAV/TRBV (beta) genes were significantly higher in children with AD compared with those with asthma and HC (p < .05). Compared with HC, the expression of TRAV13-1 and TRAV4 genes was significantly higher in both asthma and AD (p < .05), with a significant positive correlation with mite-specific IgE levels (p < .01). In contrast, TRBV7-9 gene expression was significantly lower in both asthma and AD (p < .01), with this gene showing a significant negative correlation with mite-specific IgE levels (p < .01). Furthermore, significantly higher TRAV8-3 gene expression, positively correlated with food-specific IgE levels, was found in children with AD compared with those with asthma (p < .05). CONCLUSION: Integrated TCR repertoires analysis provides clinical insights into the diverse TCR genes linked to antigen specificity, offering potential for precision immunotherapy in childhood allergies.


Allergens , Asthma , Dermatitis, Atopic , Immunoglobulin E , Humans , Asthma/immunology , Asthma/genetics , Dermatitis, Atopic/immunology , Dermatitis, Atopic/genetics , Male , Female , Allergens/immunology , Child , Immunoglobulin E/blood , Immunoglobulin E/immunology , Child, Preschool , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Complementarity Determining Regions/genetics , Complementarity Determining Regions/immunology , Case-Control Studies , Animals
3.
Mol Biol Rep ; 51(1): 627, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717532

MicroRNAs (miRNAs) are short, non-coding single-stranded RNA molecules approximately 22 nucleotides in length, intricately involved in post-transcriptional gene expression regulation. Over recent years, researchers have focused keenly on miRNAs, delving into their mechanisms in various diseases such as cancers. Among these, miR-26a emerges as a pivotal player in respiratory ailments such as pneumonia, idiopathic pulmonary fibrosis, lung cancer, asthma, and chronic obstructive pulmonary disease. Studies have underscored the significance of miR-26a in the pathogenesis and progression of respiratory diseases, positioning it as a promising therapeutic target. Nevertheless, several challenges persist in devising medical strategies for clinical trials involving miR-26a. In this review, we summarize the regulatory role and significance of miR-26a in respiratory diseases, and we analyze and elucidate the challenges related to miR-26a druggability, encompassing issues such as the efficiency of miR-26a, delivery, RNA modification, off-target effects, and the envisioned therapeutic potential of miR-26a in clinical settings.


Gene Expression Regulation , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Animals , Respiratory Tract Diseases/genetics , Respiratory Tract Diseases/therapy , Respiratory Tract Diseases/metabolism , Asthma/genetics , Asthma/therapy , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/therapy , Idiopathic Pulmonary Fibrosis/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/therapy
4.
Nat Commun ; 15(1): 3751, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704398

Association of circulating glycoprotein acetyls (GlycA), a systemic inflammation biomarker, with lung function and respiratory diseases remain to be investigated. We examined the genetic correlation, shared genetics, and potential causality of GlycA (N = 115,078) with lung function and respiratory diseases (N = 497,000). GlycA showed significant genetic correlation with FEV1 (rg = -0.14), FVC (rg = -0.18), asthma (rg = 0.21) and COPD (rg = 0.31). We consistently identified ten shared loci (including chr3p21.31 and chr8p23.1) at both SNP and gene level revealing potential shared biological mechanisms involving ubiquitination, immune response, Wnt/ß-catenin signaling, cell growth and differentiation in tissues or cells including blood, epithelium, fibroblast, fetal thymus, and fetal intestine. Genetically elevated GlycA was significantly correlated with lung function and asthma susceptibility (354.13 ml decrement of FEV1, 442.28 ml decrement of FVC, and 144% increased risk of asthma per SD increment of GlycA) from MR analyses. Our findings provide insights into biological mechanisms of GlycA in relating to lung function, asthma, and COPD.


Asthma , Biomarkers , Lung , Polymorphism, Single Nucleotide , Pulmonary Disease, Chronic Obstructive , Humans , Asthma/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Biomarkers/metabolism , Biomarkers/blood , Male , Female , Genetic Predisposition to Disease , Glycoproteins/genetics , Glycoproteins/metabolism , Middle Aged , Inflammation/genetics , Genome-Wide Association Study , Adult , Aged , Respiratory Function Tests , Forced Expiratory Volume
5.
Nat Commun ; 15(1): 3900, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724552

By incompletely understood mechanisms, type 2 (T2) inflammation present in the airways of severe asthmatics drives the formation of pathologic mucus which leads to airway mucus plugging. Here we investigate the molecular role and clinical significance of intelectin-1 (ITLN-1) in the development of pathologic airway mucus in asthma. Through analyses of human airway epithelial cells we find that ITLN1 gene expression is highly induced by interleukin-13 (IL-13) in a subset of metaplastic MUC5AC+ mucus secretory cells, and that ITLN-1 protein is a secreted component of IL-13-induced mucus. Additionally, we find ITLN-1 protein binds the C-terminus of the MUC5AC mucin and that its deletion in airway epithelial cells partially reverses IL-13-induced mucostasis. Through analysis of nasal airway epithelial brushings, we find that ITLN1 is highly expressed in T2-high asthmatics, when compared to T2-low children. Furthermore, we demonstrate that both ITLN-1 gene expression and protein levels are significantly reduced by a common genetic variant that is associated with protection from the formation of mucus plugs in T2-high asthma. This work identifies an important biomarker and targetable pathways for the treatment of mucus obstruction in asthma.


Asthma , GPI-Linked Proteins , Interleukin-13 , Lectins , Mucin 5AC , Mucus , Child , Humans , Asthma/genetics , Asthma/metabolism , Cytokines , Epithelial Cells/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Interleukin-13/genetics , Interleukin-13/metabolism , Lectins/genetics , Lectins/metabolism , Mucin 5AC/genetics , Mucin 5AC/metabolism , Mucus/metabolism , Nasal Mucosa/metabolism , Polymorphism, Genetic , Respiratory Mucosa/metabolism
6.
J Neuroimmunol ; 390: 578341, 2024 May 15.
Article En | MEDLINE | ID: mdl-38613873

Maternal allergic asthma (MAA) during pregnancy has been associated with increased risk of neurodevelopmental disorders in humans, and rodent studies have demonstrated that inducing a T helper-2-mediated allergic response during pregnancy leads to an offspring behavioral phenotype characterized by decreased social interaction and increased stereotypies. The interleukin (IL)-4 cytokine is hypothesized to mediate the neurobehavioral impact of MAA on offspring. Utilizing IL-4 knockout mice, this study assessed whether MAA without IL-4 signaling would still impart behavioral deficits. C57 and IL-4 knockout female mice were sensitized to ovalbumin, exposed to repeated MAA inductions, and their offspring performed social, cognitive, and motor tasks. Only C57 offspring of MAA dams displayed social and cognitive deficits, while IL-4 knockout mice showed altered motor activity compared with C57 mice. These findings highlight a key role for IL-4 signaling in MAA-induced behavioral deficits and more broadly in normal brain development.


Asthma , Interleukin-4 , Mice, Inbred C57BL , Mice, Knockout , Prenatal Exposure Delayed Effects , Animals , Female , Mice , Pregnancy , Asthma/immunology , Asthma/genetics , Interleukin-4/genetics , Interleukin-4/deficiency , Prenatal Exposure Delayed Effects/immunology , Behavior, Animal/physiology , Male , Ovalbumin/toxicity , Social Behavior , Motor Activity/physiology
7.
Mol Immunol ; 170: 9-18, 2024 Jun.
Article En | MEDLINE | ID: mdl-38593669

Asthma is viewed as an airway disease and an inflammatory condition. This study aims to reveal the role of Kruppel-like factor 5 (KLF5)-mediated pyroptosis of airway epithelial cells in airway inflammation in asthma. The asthmatic mouse model was established. The mice were infected with the lentivirus containing sh-KLF5, antagomiR-182-5p, and pc-Toll-like receptor 4 (TLR4). Airway hyperresponsiveness was measured, and the cells in bronchoalveolar lavage fluid (BALF) were sorted and counted. The expression levels of interleukin (IL)-4/IL-13/IL-6/IL-18/IL-1ß/NOD-like receptor family pyrin domain containing 3 (NLRP3)/N-gasdermin D (GSDMD-N)/cleaved caspase-1 were detected. The pathological changes in lung tissue were observed. The enrichment of KLF5 in the miR-182-5p promoter region was measured. The binding relationship among KLF5, miR-182-5p, and TLR4 were analyzed. KLF5 was highly expressed in asthmatic mice. Silencing KLF5 improved airway resistance and lung dynamic compliance, reduced the cells in BALF and the expression of IL-4/IL-13/IL-6/NLRP3/GSDMD-N/cleaved caspase-1/IL-18/IL-1ß, and alleviated the pathological changes. Mechanistically, KLF5 bonded to the miR-182-5p promoter to inhibit miR-182-5p expression, and miR-182-5p inhibited TLR4. Silencing miR-182-5p or TLR4 overexpression reversed the improvement of silencing KLF5 on airway inflammation and pyroptosis in asthmatic mice. In conclusion, KLF5 inhibited miR-182-5p to promote TLR4 expression, thus aggravating pyroptosis and airway inflammation in asthmatic mice.


Asthma , Epithelial Cells , Kruppel-Like Transcription Factors , MicroRNAs , Pyroptosis , Toll-Like Receptor 4 , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Asthma/metabolism , Asthma/genetics , Asthma/pathology , Toll-Like Receptor 4/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Mice , Epithelial Cells/metabolism , Inflammation/pathology , Inflammation/genetics , Inflammation/metabolism , Signal Transduction , Disease Models, Animal , Mice, Inbred BALB C , Female
8.
Int Immunopharmacol ; 133: 112064, 2024 May 30.
Article En | MEDLINE | ID: mdl-38608447

BACKGROUND: There is mounting evidence that asthma might exacerbate depression. We sought to examine candidates for diagnostic genes in patients suffering from asthma and depression. METHODS: Microarray data were downloaded from the Gene Expression Omnibus(GEO) database and used to screen for differential expressed genes(DEGs) in the SA and MDD datasets. A weighted gene co-expression network analysis(WGCNA) was used to identify the co-expression modules of SA and MDD. The least absolute shrinkage and selection operatoes(LASSO) and support vector machine(SVM) were used to determine critical biomarkers. Immune cell infiltration analysis was used to investigate the correlation between immune cell infiltration and common biomarkers of SA and MDD. Finally, validation of these analytical results was accomplished via the use of both in vivo and in vitro studies. RESULTS: The number of DEGs that were included in the MDD dataset was 5177, whereas the asthma dataset had 1634 DEGs. The intersection of DEGs for SA and MDD included 351 genes, the strongest positive modules of SA and MDD was 119 genes, which played a function in immunity. The intersection of DEGs and modular hub genes was 54, following the analysis using machine learning algorithms,three hub genes were identified and employed to formulate a nomogram and for the evaluation of diagnostic effectiveness, which demonstrated a significant diagnostic value (area under the curve from 0.646 to 0.979). Additionally, immunocyte disorder was identified by immune infiltration. In vitro studies have revealed that STK11IP deficiency aggravated the LPS/IFN-γinduced up-regulation in M1 macrophage activation. CONCLUSION: Asthma and MDD pathophysiology may be associated with alterations in inflammatory processes and immune pathways. Additionally, STK11IP may serve as a diagnostic marker for individuals with the two conditions.


Asthma , Biomarkers , Computational Biology , Machine Learning , Asthma/diagnosis , Asthma/genetics , Asthma/immunology , Humans , Animals , Gene Expression Profiling , Gene Regulatory Networks , Mice , Databases, Genetic
9.
Clin Exp Allergy ; 54(5): 314-328, 2024 May.
Article En | MEDLINE | ID: mdl-38556721

BACKGROUND: Numerous children present with early wheeze symptoms, yet solely a subgroup develops childhood asthma. Early identification of children at risk is key for clinical monitoring, timely patient-tailored treatment, and preventing chronic, severe sequelae. For early prediction of childhood asthma, we aimed to define an integrated risk score combining established risk factors with genome-wide molecular markers at birth, complemented by subsequent clinical symptoms/diagnoses (wheezing, atopic dermatitis, food allergy). METHODS: Three longitudinal birth cohorts (PAULINA/PAULCHEN, n = 190 + 93 = 283, PASTURE, n = 1133) were used to predict childhood asthma (age 5-11) including epidemiological characteristics and molecular markers: genotype, DNA methylation and mRNA expression (RNASeq/NanoString). Apparent (ap) and optimism-corrected (oc) performance (AUC/R2) was assessed leveraging evidence from independent studies (Naïve-Bayes approach) combined with high-dimensional logistic regression models (LASSO). RESULTS: Asthma prediction with epidemiological characteristics at birth (maternal asthma, sex, farm environment) yielded an ocAUC = 0.65. Inclusion of molecular markers as predictors resulted in an improvement in apparent prediction performance, however, for optimism-corrected performance only a moderate increase was observed (upto ocAUC = 0.68). The greatest discriminate power was reached by adding the first symptoms/diagnosis (up to ocAUC = 0.76; increase of 0.08, p = .002). Longitudinal analysis of selected mRNA expression in PASTURE (cord blood, 1, 4.5, 6 years) showed that expression at age six had the strongest association with asthma and correlation of genes getting larger over time (r = .59, p < .001, 4.5-6 years). CONCLUSION: Applying epidemiological predictors alone showed moderate predictive abilities. Molecular markers from birth modestly improved prediction. Allergic symptoms/diagnoses enhanced the power of prediction, which is important for clinical practice and for the design of future studies with molecular markers.


Asthma , Humans , Asthma/epidemiology , Asthma/genetics , Asthma/diagnosis , Female , Male , Child , Child, Preschool , Risk Factors , Longitudinal Studies , DNA Methylation , Biomarkers , Birth Cohort
10.
Physiol Rep ; 12(8): e16008, 2024 Apr.
Article En | MEDLINE | ID: mdl-38631890

We executed this study to determine if chemerin-like receptor 1 (CMKLR1), a Gi/o protein-coupled receptor expressed by leukocytes and non-leukocytes, contributes to the development of phenotypic features of non-atopic asthma, including airway hyperresponsiveness (AHR) to acetyl-ß-methylcholine chloride, lung hyperpermeability, airway epithelial cell desquamation, and lung inflammation. Accordingly, we quantified sequelae of non-atopic asthma in wild-type mice and mice incapable of expressing CMKLR1 (CMKLR1-deficient mice) following cessation of acute inhalation exposure to either filtered room air (air) or ozone (O3), a criteria pollutant and non-atopic asthma stimulus. Following exposure to air, lung elastic recoil and airway responsiveness were greater while the quantity of adiponectin, a multi-functional adipocytokine, in bronchoalveolar lavage (BAL) fluid was lower in CMKLR1-deficient as compared to wild-type mice. Regardless of genotype, exposure to O3 caused AHR, lung hyperpermeability, airway epithelial cell desquamation, and lung inflammation. Nevertheless, except for minimal genotype-related effects on lung hyperpermeability and BAL adiponectin, we observed no other genotype-related differences following O3 exposure. In summary, we demonstrate that CMKLR1 limits the severity of innate airway responsiveness and lung elastic recoil but has a nominal effect on lung pathophysiology induced by acute exposure to O3.


Asthma , Ozone , Pneumonia , Animals , Mice , Male , Ozone/adverse effects , Adiponectin/pharmacology , Lung , Pneumonia/chemically induced , Bronchoalveolar Lavage Fluid , Receptors, G-Protein-Coupled , Asthma/genetics , Chemokines/pharmacology , Intercellular Signaling Peptides and Proteins/pharmacology
11.
Front Immunol ; 15: 1325868, 2024.
Article En | MEDLINE | ID: mdl-38585265

Background: Many observational studies have been reported that patients with autoimmune or allergic diseases seem to have a higher risk of developing senile cataract, but the views are not consistent. In order to minimize the influence of reverse causality and potential confounding factors, we performed Mendelian Randomization (MR) analysis to investigate the genetic causal associations between autoimmune, allergic diseases and senile cataract. Methods: Single nucleotide polymorphisms associated with ten common autoimmune and allergic diseases were obtained from the IEU Open genome-wide association studies (GWAS) database. Summary-level GWAS statistics for clinically diagnosed senile cataract were obtained from the FinnGen research project GWAS, which consisted of 59,522 individuals with senile cataracts and 312,864 control individuals. MR analysis was conducted using mainly inverse variance weighted (IVW) method and further sensitivity analysis was performed to test robustness. Results: As for ten diseases, IVW results confirmed that type 1 diabetes (OR = 1.06; 95% CI = 1.05-1.08; p = 2.24×10-12), rheumatoid arthritis (OR = 1.05; 95% CI = 1.02-1.08; p = 1.83×10-4), hypothyroidism (OR = 2.4; 95% CI = 1.42-4.06; p = 1.12×10-3), systemic lupus erythematosus (OR = 1.02; 95% CI = 1.01-1.03; p = 2.27×10-3), asthma (OR = 1.02; 95% CI = 1.01-1.03; p = 1.2×10-3) and allergic rhinitis (OR = 1.07; 95% CI = 1.02-1.11; p = 2.15×10-3) were correlated with the risk of senile cataract. Celiac disease (OR = 1.04; 95% CI = 1.01-1.08; P = 0.0437) and atopic dermatitis (OR = 1.05; 95% CI = 1.01-1.10; P = 0.0426) exhibited a suggestive connection with senile cataract after Bonferroni correction. These associations are consistent across weighted median and MR Egger methods, with similar causal estimates in direction and magnitude. Sensitivity analysis further proved that these associations were reliable. Conclusions: The results of the MR analysis showed that there were causal relationships between type 1 diabetes, rheumatoid arthritis, hypothyroidism, systemic lupus erythematosus, asthma, allergic rhinitis and senile cataract. To clarify the possible role of autoimmune and allergy in the pathophysiology of senile cataract, further studies are needed.


Arthritis, Rheumatoid , Asthma , Autoimmune Diseases , Cataract , Diabetes Mellitus, Type 1 , Hypothyroidism , Lupus Erythematosus, Systemic , Rhinitis, Allergic , Humans , Genome-Wide Association Study , Mendelian Randomization Analysis , Autoimmune Diseases/epidemiology , Autoimmune Diseases/genetics , Asthma/epidemiology , Asthma/genetics , Cataract/genetics
12.
Front Endocrinol (Lausanne) ; 15: 1348248, 2024.
Article En | MEDLINE | ID: mdl-38586450

Background: The causal association between thyroid dysfunction (including hyperthyroidism and hypothyroidism) and sepsis is controversial in previous studies. Therefore, we used Mendelian randomization (MR) to explore the causal association between hyperthyroidism or hypothyroidism and the susceptibility to four distinct subtypes of sepsis (streptococcal sepsis, puerperal sepsis, asthma-associated pneumonia or sepsis, and other sepsis). Methods: In our research, we conducted two-sample Mendelian randomization (MR) analyses utilizing publicly available genome-wide association studies (GWAS) data from Sakaue et al. and the Finnish database to investigate the potential causal associations between hyperthyroidism, hypothyroidism, and each of the four distinct subtypes of sepsis, in addition to reverse MR analyses of the positive results to examine the existence of reverse causality. Results: Genetic hypothyroidism was causally related to the development of asthma-associated pneumonia or sepsis (ORIVW: 1.097, 95% CI: 1.024 to 1.174, P = 0.008); hypothyroidism was significantly associated with the development of other sepsis (ORIVW: 1.070, 95% CI: 1.028 to 1.115, P < 0.001). In addition, sensitivity analysis substantiated the robustness of these two MR findings, with no evidence of horizontal pleiotropy observed (P > 0.05). MR Egger regression analysis demonstrated no heterogeneity between instrumental variables (IVs). Inverse MR results confirmed no reverse causality between hypothyroidism and asthma-associated pneumonia or sepsis, or between hypothyroidism and other sepsis. The findings of this study also unveiled that there is no evidence of a causal link between hypothyroidism and the development of streptococcal sepsis or puerperal sepsis. Additionally, the research provided evidence indicating the absence of a causal relationship between hyperthyroidism and streptococcal sepsis, puerperal sepsis, asthma-associated pneumonia or sepsis, and other sepsis. Conclusions: This study identified a causal link between hypothyroidism and the occurrence of asthma-associated pneumonia or sepsis, and other sepsis, but not with the development of streptococcal sepsis and puerperal sepsis. Moreover, our findings did not reveal any causal association between hyperthyroidism and streptococcal sepsis, puerperal sepsis, asthma-associated pneumonia or sepsis, and other sepsis.


Asthma , Hyperthyroidism , Hypothyroidism , Pneumonia , Sepsis , Humans , Genome-Wide Association Study , Mendelian Randomization Analysis , Sepsis/complications , Sepsis/genetics , Asthma/complications , Asthma/genetics
13.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 225-232, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38650129

Abnormal expression of non-coding microRNA is associated with the development of combined allergic rhinitis and asthma syndrome (CARAS). However, the function of miR-4454 in CARAS is unknown. Our study aimed to reveal the clinical significance and related mechanism of miR-4454 in CARAS. Blood samples from 38 cases of CARAS and 43 cases of healthy subjects were collected to detect the expression of miR-4454. House dust mite (HDM) sensitization and challenge-induced bronchial epithelial cells to simulate the asthma state model in vitro, miR-4454 mimics and inhibitor transfection to detect the expression level of pro-inflammatory cytokines, cell survival rate and migration ability, flow cytometry and western blot (WB) Detection of cell cycle, apoptosis and inflammation-related protein levels. Compared with healthy controls, the expression of miR-4454 in the blood of CARAS patients was significantly up-regulated, and IL-6 and IL-8 were significantly up-regulated in the HDM treatment group, indicating that the model induction was successful. After overexpression of miR-4454, cell proliferation and migration in the HDM-treated group were significantly inhibited, and the levels of early apoptosis and inflammation-related proteins (IL-17, IL-17RD, TNF-α, GCSF and NF-κB) were increased High; after inhibiting miR-4454, cell proliferation and migration were significantly enhanced, and the levels of apoptosis and inflammation-related proteins were decreased. This study found that inhibiting the expression of miR-4454 can improve HDM-induced cell injury, which may be related to miR-4454 regulating the activation of IL-17/NF-кB inflammatory axis.


Apoptosis , Asthma , Cell Proliferation , MicroRNAs , Rhinitis, Allergic , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Rhinitis, Allergic/genetics , Rhinitis, Allergic/metabolism , Asthma/genetics , Asthma/pathology , Male , Female , Apoptosis/genetics , Adult , Cell Proliferation/genetics , Animals , Inflammation/genetics , Inflammation/pathology , Cell Movement/genetics , Pyroglyphidae/immunology , Cytokines/metabolism , Cytokines/blood , NF-kappa B/metabolism , Case-Control Studies , Epithelial Cells/metabolism , Syndrome , Clinical Relevance
14.
Medicine (Baltimore) ; 103(16): e37796, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38640283

BACKGROUND: Asthma ranks among the most prevalent non-communicable diseases worldwide. Previous studies have elucidated the significant role of the immune system in its pathophysiology. Nevertheless, the immune-related mechanisms underlying asthma are complex and still inadequately understood. Thus, our objective was to investigate novel key biomarkers and immune infiltration characteristics associated with asthma by employing integrated bioinformatics tools. METHODS: In this study, we conducted a weighted gene co-expression network analysis (WGCNA) to identify key modules and genes potentially implicated in asthma. Functional annotation of these key modules and genes was carried out through gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Additionally, we constructed a protein-protein interaction (PPI) network using the STRING database to identify 10 hub genes. Furthermore, we evaluated the relative proportion of immune cells in bronchial epithelial cell samples from 20 healthy individuals and 88 asthmatic patients using CIBERSORT. Finally, we validated the hub genes and explored their correlation with immune infiltration. RESULTS: Furthermore, 20 gene expression modules and 10 hub genes were identified herein. Among them, complement component 3 (C3), prostaglandin I2 receptor (PTGIR), parathyroid hormone-like hormone (PTHLH), and C-X3-C motif chemokine ligand 1 (CX3CL1) were closely correlated with the infiltration of immune cells. They may be novel candidate biomarkers or therapeutic targets for asthma. Furthermore, B cells memory, and plasma cells might play an important role in immune cell infiltration after asthma. CONCLUSIONS: C3, PTGIR, CX3CL1, and PTHLH have important clinical diagnostic values and are correlated with infiltration of multiple immune cell types in asthma. These hub genes, B cells memory, and plasma cells may become important biological targets for therapeutic asthma drug screening and drug design.


Asthma , Epithelial Cells , Humans , Asthma/genetics , Biomarkers , Computational Biology , Databases, Factual , Gene Regulatory Networks
15.
Biomolecules ; 14(4)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38672410

Inflammation is a physiological condition characterized by a complex interplay between different cells handled by metabolites and specific inflammatory-related molecules. In some pathological situations, inflammation persists underlying and worsening the pathological state. Over the years, two membrane transporters namely OCTN1 (SLC22A4) and OCTN2 (SLC22A5) have been shown to play specific roles in inflammation. These transporters form the OCTN subfamily within the larger SLC22 family. The link between these proteins and inflammation has been proposed based on their link to some chronic inflammatory diseases such as asthma, Crohn's disease (CD), and rheumatoid arthritis (RA). Moreover, the two transporters show the ability to mediate the transport of several compounds including carnitine, carnitine derivatives, acetylcholine, ergothioneine, and gut microbiota by-products, which have been specifically associated with inflammation for their anti- or proinflammatory action. Therefore, the absorption and distribution of these molecules rely on the presence of OCTN1 and OCTN2, whose expression is modulated by inflammatory cytokines and transcription factors typically activated by inflammation. In the present review, we wish to provide a state of the art on OCTN1 and OCTN2 transport function and regulation in relationships with inflammation and inflammatory diseases focusing on the metabolic signature collected in different body districts and gene polymorphisms related to inflammatory diseases.


Inflammation , Organic Cation Transport Proteins , Solute Carrier Family 22 Member 5 , Symporters , Humans , Inflammation/metabolism , Solute Carrier Family 22 Member 5/metabolism , Solute Carrier Family 22 Member 5/genetics , Animals , Organic Cation Transport Proteins/metabolism , Organic Cation Transport Proteins/genetics , Ergothioneine/metabolism , Crohn Disease/metabolism , Crohn Disease/genetics , Crohn Disease/pathology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/genetics , Gastrointestinal Microbiome , Carnitine/metabolism , Asthma/metabolism , Asthma/genetics , Acetylcholine/metabolism
16.
Genes (Basel) ; 15(4)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38674355

Inhaled corticosteroids (ICS) are efficacious in the treatment of asthma, which affects more than 300 million people in the world. While genome-wide association studies have identified genes involved in differential treatment responses to ICS in asthma, few studies have evaluated the effects of combined rare and common variants on ICS response among children with asthma. Among children with asthma treated with ICS with whole exome sequencing (WES) data in the PrecisionLink Biobank (91 White and 20 Black children), we examined the effect and contribution of rare and common variants with hospitalizations or emergency department visits. For 12 regions previously associated with asthma and ICS response (DPP10, FBXL7, NDFIP1, TBXT, GLCCI1, HDAC9, TBXAS1, STAT6, GSDMB/ORMDL3, CRHR1, GNGT2, FCER2), we used the combined sum test for the sequence kernel association test (SKAT) adjusting for age, sex, and BMI and stratified by race. Validation was conducted in the Biorepository and Integrative Genomics (BIG) Initiative (83 White and 134 Black children). Using a Bonferroni threshold for the 12 regions tested (i.e., 0.05/12 = 0.004), GSDMB/ORMDL3 was significantly associated with ICS response for the combined effect of rare and common variants (p-value = 0.003) among White children in the PrecisionLink Biobank and replicated in the BIG Initiative (p-value = 0.02). Using WES data, the combined effect of rare and common variants for GSDMB/ORMDL3 was associated with ICS response among asthmatic children in the PrecisionLink Biobank and replicated in the BIG Initiative. This proof-of-concept study demonstrates the power of biobanks of pediatric real-life populations in asthma genomic investigations.


Adrenal Cortex Hormones , Asthma , Gasdermins , Membrane Proteins , Humans , Asthma/drug therapy , Asthma/genetics , Child , Female , Male , Adrenal Cortex Hormones/therapeutic use , Adrenal Cortex Hormones/administration & dosage , Administration, Inhalation , Membrane Proteins/genetics , Genome-Wide Association Study , Adolescent , Child, Preschool , Exome Sequencing , Polymorphism, Single Nucleotide
17.
Mol Genet Genomic Med ; 12(4): e2438, 2024 Apr.
Article En | MEDLINE | ID: mdl-38666495

There is no evidence evaluating the IL10 epigenetic upregulation among mestizo children in a high-altitude Andean city in Latin America. OBJECTIVE: To identify polymorphisms and methylation profiles in the IL10 gene associated with asthma in children aged 5 to 11. METHODS: A case-control study was conducted with asthmatic and non-asthmatic children aged 5 to 11 years in Cuenca-Ecuador. Data on allergic diseases and risk factors were collected through a questionnaire for parents. Atopy was measured by skin prick test (SPT) to relevant aeroallergens. Three IL10 single nucleotide polymorphisms were evaluated in all participants, and methylation analysis was performed in 54 participants. Association between risk factors, allergic diseases and genetic factors were estimated using multivariate logistic regression. RESULTS: The results of polymorphisms showed no differences between cases and controls when comparing the SNPs rs3024495, rs3024496, rs1800896 allelic and genotypic frequencies. In the methylation analysis, no differences in the IL10 methylation profile were found between cases and controls; however, the multivariate analysis showed an association between the mother's smoking habits and the IL10 methylation profile. CONCLUSION: Smoking habit could be essential as an environmental exposure factor in regulating gene expression in children with asthma.


Asthma , DNA Methylation , Interleukin-10 , Polymorphism, Single Nucleotide , Humans , Asthma/genetics , Asthma/epidemiology , Interleukin-10/genetics , Female , Male , Child , Child, Preschool , Ecuador/epidemiology , Smoking , Mothers , Case-Control Studies
18.
BMJ Open Respir Res ; 11(1)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38569671

BACKGROUND: Asthma is a chronic disease affecting the lower respiratory tract, which can lead to death in severe cases. The cause of asthma is not fully known, so exploring its potential mechanism is necessary for the targeted therapy of asthma. METHOD: Asthma mouse model was established with ovalbumin (OVA). H&E staining, immunohistochemistry and ELISA were used to detect the inflammatory response in asthma. Transcriptome sequencing was performed to screen differentially expressed genes (DEGs). The role of KIF23 silencing in cell viability, proliferation and apoptosis was explored by cell counting kit-8, EdU assay and flow cytometry. Effects of KIF23 knockdown on inflammation, oxidative stress and pyroptosis were detected by ELISA and western blot. After screening KIF23-related signalling pathways, the effect of KIF23 on p53 signalling pathway was explored by western blot. RESULTS: In the asthma model, the levels of caspase-3, IgG in serum and inflammatory factors (interleukin (IL)-1ß, KC and tumour necrosis factor (TNF)-α) in serum and bronchoalveolar lavage fluid were increased. Transcriptome sequencing showed that there were 352 DEGs in the asthma model, and 7 hub genes including KIF23 were identified. Knockdown of KIF23 increased cell proliferation and inhibited apoptosis, inflammation and pyroptosis of BEAS-2B cells induced by IL-13 in vitro. In vivo experiments verified that knockdown of KIF23 inhibited oxidative stress, inflammation and pyroptosis to alleviate OVA-induced asthma mice. In addition, p53 signalling pathway was suppressed by KIF23 knockdown. CONCLUSION: Knockdown of KIF23 alleviated the progression of asthma by suppressing pyroptosis and inhibited p53 signalling pathway.


Asthma , Lung , Animals , Humans , Mice , Asthma/genetics , Asthma/pathology , Inflammation/genetics , Lung/pathology , Microtubule-Associated Proteins/adverse effects , Microtubule-Associated Proteins/metabolism , Pyroptosis , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/adverse effects , Tumor Suppressor Protein p53/metabolism
19.
PeerJ ; 12: e17106, 2024.
Article En | MEDLINE | ID: mdl-38646478

Background: Allergic asthma is the most prevalent asthma phenotype and is associated with the disorders of immune cells and glycolysis. Macrophages are the most common type of immune cells in the lungs. Calprotectin (S100A8 and S100A9) are two pro-inflammatory molecules that target the Toll-like receptor 4 (TLR4) and are substantially increased in the serum of patients with severe asthma. This study aimed to determine the effects of S100A8/A9 on macrophage polarization and glycolysis associated with allergic asthma. Methods: To better understand the roles of S100A8 and S100A9 in the pathogenesis of allergic asthma, we used ovalbumin (OVA)-induced MH-S cells, and OVA-sensitized and challenged mouse models (wild-type male BALB/c mice). Enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, flow cytometry, hematoxylin-eosin staining, and western blotting were performed. The glycolysis inhibitor 3-bromopyruvate (3-BP) was used to observe changes in glycolysis in mice. Results: We found knockdown of S100A8 or S100A9 in OVA-induced MH-S cells inhibited inflammatory cytokines, macrophage polarization biomarker expression, and pyroptosis cell proportion, but increased anti-inflammatory cytokine interleukin (IL)-10 mRNA; also, glycolysis was inhibited, as evidenced by decreased lactate and key enzyme expression; especially, knockdown of S100A8 or S100A9 inhibited the activity of TLR4/myeloid differentiation primary response gene 88 (MyD88)/Nuclear factor kappa-B (NF-κB) signaling pathway. Intervention with lipopolysaccharides (LPS) abolished the beneficial effects of S100A8 and S100A9 knockdown. The observation of OVA-sensitized and challenged mice showed that S100A8 or S100A9 knockdown promoted respiratory function, improved lung injury, and inhibited inflammation; knockdown of S100A8 or S100A9 also suppressed macrophage polarization, glycolysis levels, and activation of the TLR4/MyD88/NF-κB signaling pathway in the lung. Conversely, S100A9 overexpression exacerbated lung injury and inflammation, promoting macrophage polarization and glycolysis, which were antagonized by the glycolysis inhibitor 3-BP. Conclusion: S100A8 and S100A9 play critical roles in allergic asthma pathogenesis by promoting macrophage perturbation and glycolysis through the TLR4/MyD88/NF-κB signaling pathway. Inhibition of S100A8 and S100A9 may be a potential therapeutic strategy for allergic asthma.


Asthma , Calgranulin A , Calgranulin B , Disease Models, Animal , Glycolysis , Macrophages , Mice, Inbred BALB C , Animals , Male , Mice , Asthma/genetics , Asthma/immunology , Asthma/pathology , Calgranulin A/metabolism , Calgranulin A/genetics , Calgranulin B/genetics , Calgranulin B/metabolism , Cytokines/metabolism , Glycolysis/drug effects , Glycolysis/genetics , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , NF-kappa B/metabolism , Ovalbumin , Signal Transduction/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics
20.
Chem Res Toxicol ; 37(3): 476-485, 2024 03 18.
Article En | MEDLINE | ID: mdl-38494904

Mechanisms underlying methylene diphenyl diisocyanate (MDI) and other low molecular weight chemical-induced asthma are unclear and appear distinct from those of high molecular weight (HMW) allergen-induced asthma. We sought to elucidate molecular pathways that differentiate asthma-like pathogenic vs nonpathogenic responses to respiratory tract MDI exposure in a murine model. Lung gene expression differences in MDI exposed immune-sensitized and nonsensitized mice vs unexposed controls were measured by microarrays, and associated molecular pathways were identified through bioinformatic analyses and further compared with published studies of a prototypic HMW asthmagen (ovalbumin). Respiratory tract MDI exposure significantly altered lung gene expression in both nonsensitized and immune-sensitized mice, vs controls. Fifty-three gene transcripts were altered in all MDI exposed lung tissue vs controls, with levels up to 10-fold higher in immune-sensitized vs nonsensitized mice. Gene transcripts selectively increased in MDI exposed immune-sensitized animals were dominated by chitinases and chemokines and showed substantial overlap with those increased in ovalbumin-induced asthma. In contrast, MDI exposure of nonsensitized mice increased type I interferon stimulated genes (ISGs) in a pattern reflecting deficiency in adenosine deaminase acting against RNA (ADAR-1), an important regulator of innate, as well as "sterile" or autoimmunity triggered by tissue damage. Thus, MDI-induced changes in lung gene expression were identified that differentiate nonpathogenic innate responses in nonsensitized hosts from pathologic adaptive responses in immune-sensitized hosts. The data suggest that MDI alters unique biological pathways involving ISGs and ADAR-1, potentially explaining its unique immunogenicity/allergenicity.


Asthma , Interferons , Animals , Mice , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Allergens/immunology , Allergens/toxicity , Asthma/chemically induced , Asthma/genetics , Gene Expression , Interferons/immunology , Interferons/metabolism , Isocyanates , Lung/metabolism , Ovalbumin
...